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Abstract

A class of singular integro-differential equations in Lebesgue spaces are stud-
ied. There are many applications of the singular integro-differential equations
discussed in this paper. An example in modeling the stress distribution of an elas-
tic medium with holes is discussed in the paper. Direct numerical schemes using
a collocation method and a mechanical quadrature rule designed for the singular
integro-differential equations are proposed for arbitrary smooth closed contours.
Convergence analysis of these methods are given. Numerical examples are also
provided.

Keywords: singular integro-differential equations, elasticity, collocation methods,
mechanical quadrature rule.

1 Introduction

In this paper, we study the following system of singular integro-differential equations
(SIDE)

(Mx ≡)
ν∑

r=0

[Ãr(t)x(r)(t) + B̃r(t)
1
πi

∫
Γ

x(r)(τ)
τ − t

dτ

+
1

2πi

∫
Γ

Kr(t, τ) · x(r)(τ)dτ ] = f(t), t ∈ Γ,

(1)

where Ãr(t), B̃r(t), and Kr(t, τ), (r = 0, ν) are given m by m matrix functions, f(t) is a
given m dimensional vector function, x(0)(t) = x(t) is a m dimensional unknown vector

function with up to ν’s continuous derivatives
drx(t)

dtr
(r = 1, ν), and Γ is an arbitrary
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smooth closed contour. We wish to find the solution x(t) to equation (1) satisfying the
condition

1
2πi

∫
Γ

x(τ)τ−k−1dτ = 0, k = 0, ν − 1. (2)

We will develop two direct methods to solve the system of singular integral equations
(SIDE) (1)-(2) and provide the convergence analysis.

Singular integral equations (SIE) and SIDE have been used to model many physical
problems, for examples, elasticity theory [2, 9, 11, 15, 16, 17, 20], aerodynamics [11, 12,
14]. We present an example from elasticity theory in Section 2 to show one application
of the SIDE (1)-(2) discussed in this paper.

Since analytic solution to SIDE is rarely available, we look for an approximate
solution to the SIDE using direct methods. Most of early direct methods for SIE and
SIDE are designed for the case where the boundary Γ is a unit circle or an interval
[1], [3]-[7], [8, 18]. The requirement of unit circle is essential because some special
polynomial interpolations are only defined on the unit circle, see [13], for example.
There are few papers that deal with arbitrary closed contours in the literature.

It should be mentioned that using a conforming mapping, one can transform an
arbitrary smooth closed contour to the unit circle. However, this approach may not
simplify the problem due to the following:

• It is not an easy job to find a conforming mapping.

• The coefficients, the kernels, and the right hand side of the transformed equation
may be more complicated and may not be smooth anymore.

• The convergence analysis may be more complicated due to the transformation of
the contour.

In the 1980-90’s, theoretical foundations for direct methods for SIE and systems
of SIE defined on arbitrary smooth contours in the complex plane were established
in [22, 23], and maybe others. But direct methods for SIDE or system of SIDE for
arbitrary contours are yet to be developed and analyzed.

In this paper, we develop a collocation method for the systems of SIDE with arbi-
trary smooth contours, and the mechanical quadrature rule, see[23] for the definition, to
approximate the integrals involved in the system of SIDE. We also give the convergence
analysis of our new method in Lebesgue spaces.

The classical continuous function space can not be used because the singular oper-
ator of the integration is unbounded. The classical theory of projection methods for Lp

spaces does not apply because the norm of some projectors (for example, the projectors
of interpolation) is unbounded for Lebesgue spaces. Thus, it is necessary to elaborate
a new theory for the collocation and quadrature method discussed in this paper.

2



The paper is organized as follows. In the next section, we present an application of
SIDE to show the importance of SIDE. In Section 3, we describe the numerical schemes
for systems of SIDE with an arbitrary smooth contour. The convergence analysis is
given in Section 4. Numerical examples are provided in Section 5.

2 An application of singular integro-differential equations

We show an application of SIDE in this section to show the importance of our work on
SIDE.

Consider an elastic medium under conditions of plane strain or generalized plane
stress which fills all of the infinite plane of the variable z and is weakened by a hole of
arbitrary shape. By convention, this problem refers to the determination of the stress
components along the contour of the hole when external forces are prescribed on the
same contour. The state of stress at infinity is given.

As described in [9], the physical model is the following:


σ
(1)
ρ + σ

(1)
v = 2

(
Φ1(ξ) + Φ1(ξ)

)
,

σ
(1)
v − σ

(1)
ρ + 2iτ

(1)
rv =

2ξ2

ρ2ω′(ξ)

(
ω(ξ)Φ

′
1(ξ) + ω

′
(ξ)Ψ1(ξ)

)
,

(3)

where σ
(1)
ρ , σ

(1)
v , τ

(1)
rv are the components of the stress in the curvilinear coordinates

related to the conformal mapping

z = ω(ξ), ξ = ρeiv (4)


Φ1(ξ) =
φ
′
1(ξ)

ω′(ξ)
, Ψ1(ξ) =

ψ
′
1(ξ)

ω′(ξ)

φ1(ξ) = φ (ω(ξ)) , ψ1(ξ) = ψ (ω(ξ)) ,

(5)

and φ(z), ψ(z), as always, denote the complex potentials in the z plane.

Suppose that the region Σ with boundary γ which is mapped by relation (4) onto
the physical region S represents an infinite region in the plane of the auxiliary variable
ξ outside the unit circle centered at the origin. This means that the function ω(ξ) is
representable in the region Σ as the series

ω(ξ) = Rξ +
c1

ξ
+

c2

ξ2
+ . . . +

cn

ξn
. . . . (6)

It may also be recalled that the functions φ1(ξ), ψ1(ξ) admit, in the same region
the representation, 


φ1(ξ) = − X + iY

2π(1 + κ)
log ξ + RΓξ + φ∗(ξ),

ψ1(ξ) = −κ(X − iY )
2π(1 + κ)

log ξ + RΓ
′
ξ + ψ∗(ξ),

(7)
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where φ∗, ψ∗ are homomorphic functions, regular at ξ = ∞, and X, Y are the com-
ponents of the resultant of the external forces applied to the boundary of the region
S.

Assume now

σ(1)
ρ = σρ + σ0

ρ, σ(1)
v = σv + σ0

v , τ (1)
rv = τrv + τ0

rv, (8)

where σ0
ρ, σ0

v , τ0
rv are the components of stress in a uniform field characterized by the

constants Γ and Γ
′
(Γ = Γ̄), and represent relations (3) with ρ = 1 as follows (σ = eiv):

2
(
Φ(σ) + Φ(σ)

)
= σρ + σv on γ,

2
(
ω(σ)Φ

′
(σ) + ω

′
(σ)Ψ(σ)

)
= σ2ω′(σ) (σv − σρ + 2iτρv) .

(9)

Here Φ and Ψ are two unknown functions, homomorphic in the region Σ. From (5) to
(7), we have the following asymptotic when |ξ| is large,

Φ(ξ) =
A

ξ
+ O(ξ−2), Ψ(ξ) =

A
′

ξ
+ O(ξ−2), (10)

A = − X + iY

2πR(1 + κ)
, A

′
=

κ(X − iY )
2πR(1 + κ)

. (11)

The stresses σ0
ρ, σ0

v , τ0
ρv then can be calculated from




σ0
ρ + σ0

v = 2
(
Φ0(ξ) + Φ0(ξ)

)
,

σ0
v − σ0

ρ + 2iτ0
ρv =

2ξ2

ρ2ω′(ξ)

(
ω(ξ)Φ

′
0(ξ) + ω

′
(ξ)Ψ0(ξ)

) (12)

with

Φ0 =
RΓ

ω′(ξ)
, Ψ0(ξ) =

RΓ
′

ω′(ξ)
. (13)

Compared with (8), we have

Φ1(ξ) = Φ(ξ) + Φ0(ξ), Ψ1(ξ) = Ψ(ξ) + Ψ0(ξ).

It is well known that, whenever the region occupied by the elastic medium contains
the infinitely remote point of the plane, the constants Γ, Γ

′
, X, Y are specified by

the problem itself. The stresses σ0
ρ, σ0

v , τ0
rv and the constants A and A

′
are therefore

known, they are defined by formulas (11) and (12).

Our problem is to determine the normal stress σv by formulas (9) from the given
values on circumference γ of the other two components, σρ and τρv. Assume

σv + σρ = Ω(σ), −2(σρ − iτρv) = Θ(σ) on γ (14)
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and rewrite (9) as




2
(
Φ(σ) + Φ(σ)

)
= Ω(σ),

σ2ω′(σ) (Ω(σ) + Θ(σ))− 2ω(σ)Φ
′
(σ) = 2ω

′
(σ)Ψ(σ) on γ.

(15)

After the transformations we obtain the required equation for determining Ω(σ) as
follows:

σ2ω′(σ)[Ω(σ) + Θ(σ)] +
1
πi

∫
γ
τ2ω′(τ)[Ω(τ) + Θ(τ)]

dτ

τ − σ
−

− 1
πi

∫
γ

ω(τ)− ω(σ)
τ − σ

Ω
′
(τ)dτ − 4ĀR

σ
= 0 on γ,

(16)

where Ā, R, Θ(σ) are known. After some manipulation, see [10] as well, we obtain

σ2ω′(σ)Ω(σ) +
σ2ω′(σ)

πi

∫
γ

Ω(τ)
τ − σ

dτ

− 1
πi

∫
γ

ω(τ)− ω(σ)
τ − σ

Ω
′
(τ)dτ +

1
πi

∫
γ

τ2ω′(τ)− σ2ω′(σ)
τ − σ

Ω(τ)dτ

=
4ĀR

σ
− σ2ω′(σ)Θ(σ)− 1

πi

∫
γ

τ2ω′(τ)Θ(τ)
τ − σ

dτ

(17)

or

A(σ)Ω(σ) +
A(σ)
πi

∫
γ

Ω(τ)
τ − σ

dτ +
1
πi

1∑
ν=0

∫
γ
Kν(σ, τ)Ω(ν)(τ)dτ = f(σ),

where

A(σ) = σ2ω′(σ), K0(σ, τ) =
τ2ω′(τ)− σ2ω′(σ)

τ − σ
, K1(σ, τ) =

ω(σ)− ω(τ)
τ − σ

,

f(σ) =
4ĀR

σ
− σ2ω′(σ)Θ(σ)− 1

πi

∫
γ

τ2ω′(τ)Θ(τ)
τ − σ

dτ.

If ω(σ), f(σ), A(σ) are Hölder functions on γ, then Kν(σ, τ) = K̃ν(σ,τ)
|τ−σ|λ , and K̃ν(σ, τ),

are also Hölder functions for 0 ≤ λ < 1, and ν = 0, 1, see [10]. Thus the application
problem can be described by the SIDE (1)-(2) with λ = 0.

3 A collocation and quadrature method for system of

SIDE

Before we describe our numerical schemes, we need some theoretical preparations.
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3.1 Theoretical preparations

Let Γ be a smooth Jordan curve which divides the entire complex plane C into two
parts, F− and F+. Assume that F− contains the infinity and F+ contains the origin.
Therefore F− = C − {F+ ∪ Γ}. Let z = ψ(w) be an analytic function that maps
conformally the exterior of the unit circle to F− so that ψ(∞) = ∞, ψ(′)(∞) > 0.

Let us consider the Riemann function t = ψ(w), w ∈ Γ0 = {ξ : |ξ| = 1}, that has at
least up to second derivatives. Assume that ψ(2)(w) satisfies the Hölder condition on
|w| = 1, that is ψ(2)(w) ∈ Hµ(Γ0), for some parameter µ, µ (0 < µ < 1). We denote
the set of such contours by C(2; µ), see [23] for more details.

In the complex [Lp(Γ)]m(1 < p < ∞) space, the norm of a vector functions g(t) =
(g1(t), . . . , gm(t)) is defined as,

||g|| =
m∑

k=1

||gk||p; ||gk||p =


1

l

∫
Γ

|gk|p|dτ |



1
p

,

where l is the length of Γ.

We will develop a direct method for the systems of SIDE (1) together with conditions
(2).

3.2 A collocation and quadrature method

Using the operators P = 1
2(I + S), Q = I − P , where I is the identity operator, and S

is a singular Cauchy nucleus, equation (1) can be written as follows:

(Mx ≡)
ν∑

r=0

(
Ar(t)(Px(r))(t) + Br(t)(Qx(r))(t)+

+
1

2πi

∫
Γ

Kr(t, τ)x(r)(τ)dτ


 = f(t), t ∈ Γ (18)

where Ar(t) = Ãr(t) + B̃r(t), Br(t) = Ãr(t)− B̃r(t), r = 0, ν.

We seek an approximate solution to problem (1)-(2) of the form

xn(t) =
n∑

k=0

ξ
(n)
k tk+ν +

−1∑
k=−n

ξ
(n)
k tk, t ∈ Γ, (19)

where ξ
(n)
k = ξk, k = −n, n are unknown vectors of dimension m. Note that xn(t)’s

constructed using (19) satisfy the condition (2).
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In our collocation method, we choose 2n + 1 different points on Γ {tj} such that
the SIDE can be satisfied exactly

(Mxn)(tj)− f(tj) = 0, (20)

As a result, we obtain a system of linear algebraic equations for the coefficients ξk,
k = −n, n,

ν∑
r=0

{Ar(tj)
n∑

k=0

(k + ν)!
(k + ν − r)!

tk+ν−rξk + Br(tj)
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

·

·t−k−r
j · ξ−k +

1
2πi

·
n∑

k=0

(k + ν)!
(k + ν − r)!

∫
Γ

Kr(tj , τ)τk+ν−rdτ · ξk

+
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

· 1
2πi

∫
Γ

Kr(tj , τ)τ−k−rdτ · ξ−k} = f(tj),

(21)

where j = 0, 2n.

We need to approximate the integrals in the system of linear algebraic equations
above as well. This is done using the mechanical quadrature formulae described in [23],

1
2πi

∫
Γ

g(τ)τ l+kdτ ≈ 1
2πi

∫
Γ

Un(τ l+1 · g(τ))τk−1dτ,

where the operator of interpolation Un is determined by, see [23],

(Ung)(t) =
2n∑

s=0

g(ts) · ls(t),

lj(t) =
2n∏

k=0,k 6=j

t− tk
tj − tk

(
tj
t

)n

≡
n∑

k=−n

Λ(j)
k tk, t ∈ Γ, j = 0, 2n.

(22)

Thus, the system of linear algebraic equations for the unknown ξk of (21) has been
approximated by the following system of linear algebraic equations

ν∑
r=0

{Ar(tj)
n∑

k=0

(k + ν)!
(k + ν − r)!

tk+ν−r
j ξk

+ Br(tj)
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

t−k−r
j · ξ−k

+
n∑

k=0

(k + ν)!
(k + ν − r)!

2n∑
s=0

Kr(tj , ts)t1+ν−r
s Λ(s)

−kξk

+
n∑

k=1

(−1)r (k + r − 1)!
(k − 1)!

2n∑
s=0

Kr(tj , ts)t−1−r
s Λ(s)

k ξ−k} = f(tj),

(23)

for j = 0, 2n. Thus we have obtained the system of linear algebraic equations for the
unknowns ξk in (19). Once these coefficients are obtained, the solution to the singular
integro-differential equations is expressed as (19).
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4 Error estimates for the numerical method

In this section, we give some error estimates for the numerical method proposed in the
previous section.

As was proved in [10], a paired vector functions
dν(Px)(t)

dtν
and

dν(Qx)(t)
dtν

can be

represented by the integrals of Cauchy type with the same density ζ(t):

dν(Px)(t)
dtν

=
1

2πi

∫
Γ

ζ(τ)
τ − t

dτ, t ∈ F+

dν(Qx)(t)
dtν

=
t−ν

2πi

∫
Γ

ζ(τ)
τ − t

dτ, t ∈ F−.




(24)

By means of the above formulae, the problem (1)-(2) can be reduced to an equivalent
(in terms of solving) singular integral equations system

(Rζ ≡)C(t)ζ(t) +
D(t)
πi

∫
Γ

ζ(τ)
τ − t

dτ +
1

2πi

∫
Γ

h(t, τ)ζ(τ)dτ = f(t), t ∈ Γ, (25)

where
C(t) =

1
2
[Aν(t) + t−νBν(t)],

D(t) =
1
2
[Aν(t)− t−νBν(t)],

(26)

and h(t, τ) is a matrix function belonging to [C(Γ)]m space for both variables t and τ ,
see [10]. The equivalence of the existence of the solution between the system of SIE
(25) and the problem (1)-(2) is the result of the following lemma from [10].

Lemma 1 The system of SIE (25) and the problem (1)-(2) are equivalent in terms of
the solvability. That is, for each solution ζ(t) of system (25), there is a solution x(t)
of the problem (1)-(2), determined by the following formulae

(Px)(t) =
(−1)ν

2πi(ν − 1)!

∫
Γ

ζ(τ)

(
(τ − t)ν−1 log

(
1− t

τ

)
+

ν−1∑
k=1

α̃kτ
ν−k−1tk

)
dτ (27)

(Qx)(t) =
(−1)ν

2πi(ν − 1)!

∫
Γ

ζ(τ)τ−ν

(
(τ − t)ν−1 log

(
1− τ

t

)
+

ν−2∑
k=1

β̃kτ
ν−k−1tk

)
dτ,

where α̃k and β̃k, are real numbers. On the other hand, for each solution x(t) of problem
(1)-(2), there is a solution ζ(t)

ζ(t) =
dν(Px)(t)

dtν
+ tν

dν(Qx)(t)
dtν

,

to the system (25). Furthermore, given a set of linear-independent solutions ζ(t) to the
system (25), there are corresponding set of linear-independent solutions to the problem
(1)-(2) from (27) and vise versa.
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The proof can be found in [10].

Before we discuss the main convergence theorem of our method, we need several
additional lemmas from [19]. Those lemmas will be used in our discussions in this
section.

Define the space

[
◦

W
(ν)

p ]m(Γ) =
{
g; ∃g(r) ∈ [C(Γ)]m, r = 0, ν − 1, g(ν) ∈ [Lp(Γ)]m

}
.

For any g ∈ [
◦

W
(ν)

p ]m, g satisfies equation (2). The norm in [
◦

W
(ν)

p ]m is defined by

||g||p,ν = ||g(ν)||[Lp]m .

We shall denote the image of space [Lp]m under the mapping P + t−νQ by [Lp,ν ]m with
the same norm as in [Lp]m.

Lemma 2 The differential operator Dν : [
◦

W
(ν)

p ]m → [Lp,ν ]m, (Dνg)(t) = g(ν)(t) is

continuously reversible and its reverse operator D−ν : [Lp,ν ]m → [
◦

W
(ν)

p ]m is determined
by the equality

(D−νg)(t) = (N+g)(t) + (N−g)(t),

where
(N+g)(t) =

(−1)ν

2πi(ν − 1)!

∫
Γ

(Pg)(τ)(τ − t)ν−1 log
(

1− t

τ

)
dτ,

(N−g)(t) =
(−1)ν−1

2πi(ν − 1)!

∫
Γ

(Qg)(τ)(τ − t)ν−1 log
(

1− τ

t

)
dτ.

The proof can be found in [19].

Lemma 3 The operator B : [
◦

W
(ν)

p ]m → [Lp]m, of the form B = (P + tνQ)Dν is
reversible and

B−1 = D−ν(P + t−νQ).

The proof can also be found in [19].

The existence of the solution to the systems of linear algebraic equations (21) and
(23) is given in the following theorems.

Theorem 4 Assume the following conditions are satisfied:

1. the contour Γ ∈ C(2, µ), 0 < µ < 1,

9



2. the matrix functions Ar(t) and Br(t) belong to the space [Hα(Γ)]m, 0 < α < 1,
for r = 0, ν,

3. det(Aν(t)) · det(Bν(t)) 6= 0, for any t ∈ Γ,

4. the left partial indexes of tνB−1
ν (t)Aν(t) are zero, for any t ∈ Γ,

5. the matrix functions Kr(t, τ) ∈ Hβ [(Γ)]m, 0 < β ≤ 1 with variables t and τ , and
the vector function f(t) ∈ [C(Γ)]m for any t ∈ Γ,

6. the operator M : [
◦

W
(ν)

p ]m → [Lp(Γ)]m is linearly reversible,

7. the points tj (j = 0, 2n) form a system of Feyer knots, see [21] for the definition,
on Γ:

tj = ψ

(
exp

(
2πi

2n + 1
(j − n)

))
, j = 0, 2n, i2 = −1. (28)

Then, if n is large enough, the system of linear equations (21) has a unique solution ξk,
k = −n, n. The approximate solutions xn(t), constructed from formula (19), converges

as n → ∞ in the normed space [
◦

W
(ν)

p ]m to the exact solution x(t) of SIDE (1)-(2).
Furthermore, the following error estimate holds:

||x− xn||p,ν ≤ O

(
1
nα

)
+ O

(
ω(f ;

1
n

)
)

+ O

(
ωt(h;

1
n

)
)

def
= δn. (29)

Proof: We show that if n is large enough, then the operator UnMUn is reversible.
The operator acts on the subspace

[
◦
Xn]m =

{
tν

n∑
k=0

αkt
k+

−1∑
k=−n

αkt
k
}

with the norm defined in [
◦

W
(ν)

p ]m to the subspace

[Rn]m =




n∑
k=−n

rkt
k


 , t ∈ Γ,

with the norm defined in [Lp(Γ)]m.

Similarly to (24) we represent
dν(Pxn)(t)

dtν
and

dν(Qxn)(t)
dtν

by integrals of Cauchy

type with the same density ζn(t) :

dν(Pxn)(t)
dtν

=
1

2πi

∫
Γ

ζn(τ)
τ − t

dτ, t ∈ F+

dν(Qxn)(t)
dtν

=
t−ν

2πi

∫
Γ

ζn(τ)
τ − t

dτ, t ∈ F−.




(30)
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It is easy to prove that

ζn(t) =
n∑

k=0

(k + ν)!
k!

tkξk + (−1)ν
n∑

k=1

(k + ν − 1)!
(k − 1)!

t−kξ−k

and therefore ζn(t) ∈ [Rn]m, for all t ∈ Γ.

Using (30), we reduce the equation UnMUnxn = Unf , to an equivalent equation,
in terms of solvability,

UnRUnxn = Unf, (31)

in the subspaces [Rn]m.

Obviously, the last equation, represents a discrete system of equations of the collo-
cation method for the system of SIE (25). From (30) and the fact that ζn ∈ [Rn]m, we
conclude that if ζn(t) is the solution of the equation (31), then yn(t), defined by

(Pyn)(t) =
(−1)ν

2πi(ν − 1)!

∫
Γ

ζn(τ)

{
(τ − t)ν−1 log

(
1− t

τ

)
+

ν−1∑
k=1

α̃kτ
ν−k−1tk

}
dτ ;

(Qyn)(t) =
(−1)ν

2πi(ν − 1)!

∫
Γ

ζn(τ)τ−ν

{
(τ − t)ν−1 log

(
1− τ

t

)
+

ν−2∑
k=1

β̃kτ
ν−k−1tk

}
dτ

(32)
is the discrete solution of the system UnMUnxn = Unf and vice versa. As we have
mentioned earlier, the vector functions yn(t) are determined uniquely in terms of ζn(t)
according to formulae (32).

It follows that if the equation (31) has a unique solution ζn(t) in the subspace [Rn]m,
then the equality yn(t) = xn(t) is true. Therefore xn(t) has been uniquely determined.

The discrete system of equation (31) is obtained from the collocation method ap-
plied to (25). We will show that for this system, all conditions of Theorem 8.3 from
[23] are satisfied. From the condition 3 of Theorem 4 and formula (26), we have
det[C(t)±D(t)] 6= 0 for any t ∈ Γ, which coincides with the condition 3 of Theorem 8.3
from [23]. From the equality

[C(t)−D(t)]−1[C(t) + D(t)] = tνB−1
ν (t)Aν(t)

and the condition 4 of Theorem 4, we conclude the left partial indexes matrix functions
of [C(t)−D(t)]−1[C(t) + D(t)] has to be zero. This is the condition 4 of Theorem 8.3
in [23].

From Lemma 3 and the conditions 3, 4, 6 listed in Theorem 4, the reversibility
of operator R : [Lp(Γ)]m → [Lp(Γ)]m follows. Note that the conditions 1, 2, 5, and
7, coincide with the conditions for Theorem 8.3 from [23]. Therefore, if n is large
enough, the system (31) has a unique solution ζn(t) ∈ [Rn]m. Hence, the linear system
UnMUnxn = Unf , and the system of linear algebraic equations (21) has a unique
solution if n is large enough.

11



From Theorem 8.3 in [23], we know that

||ζ − ζn||[Lp]m ≤ O

(
1
nα

)
+ O(ω(f ;

1
n

)) + O

(
ωt(h;

1
n

)
)

. (33)

From (24) and (30) we obtain

(Px)(ν)(t) = (Pζ)(t) and (Qx)(ν)(t) = t−ν · (Qζ)(t).

Therefore we have

(Pxn)(ν)(t) = (Pζn)(t),

(Qxn)(ν) = t−ν(Qζn)(t).

We proceed to get an error estimate

||x− xn||p,ν = ||x(ν) − x(ν)
n ||[Lp]m

≤ ||P (ζ − ζn)||[Lp]m + ||t−νQ(ζ − ζn)||[Lp]m

≤ ||P || · ||ζ − ζn||[Lp]m + ||t−ν ||Lp · ||Q|| · ||ζ − ζn||[Lp]m

≤ (||P ||+ ||t−ν || · ||Q||)||ζ − ζn||
= (||P ||+ c1||Q||)||ζ − ζn||.

(34)

Here we have used the inequality

||t−ν ||Lp =


1

l

∫
Γ

|t−ν |pdt




1
p

=


1

l

∫
Γ

|t−pν |dt




1
p

≤

1

l
· 1
min
t∈Γ

|t|p·ν · l



1
p

=


 1

min
t∈Γ

|t|p·ν




1
p

= c1.

From the previous inequality (34) and with the help of (33) we obtain (29). That
completes the proof of the theorem.

The result in the convergence theorem assume that the integrations in the system
of linear algebraic equations (21) can be calculated exactly. However, in practice, those
integrations are evaluated using the mechanical quadrature rule. We introduce the
following convergence theorem if the integrations are approximated by the mechanical
quadrature rule [23].

Theorem 5 Assume that all the conditions 1-7 in Theorem 4 are satisfied. Then, if
n is large enough, the system of linear algebraic equations (23) has a unique solution
ξk, k = −n, n. The approximate solution of (19) converges to the exact solution x(t)
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of SIDE (1)-(2) in the norm [
◦

W
(ν)

p ]m as n → ∞. Furthermore, the following error
estimate is true,

||x− xn||p,ν = δn + O(ωτ (h;
1
n

)) + O

(
log(2n + 1)

nα

)
. (35)

Proof: It is easy to verify that the system of singular integro-differential equations
(23) is equivalent to the operator equation

Un

{
ν∑

r=0
[Ar(t)(Px

(r)
n )(t) + Br(t)(Qx

(r)
n )(t)

+
1

2πi

∫
Γ

1
τ
U (τ)

n [τν+1−rK(t, τ)](Px(r)
n )(τ)dτ

+
1

2πi

∫
Γ

1
τ
U (τ)

n [τ−r−1K(t, τ)](Qx(r)
n )(τ)dτ ]


 = Unf,

(36)

which is equivalent to the equation, in terms of solvability,

Un


C(t)ζn(t) + D(t)(Sζn)(t) +

1
2πi

∫
Γ

1
τ
U (τ)

n [τh(t, τ)] · ζn(τ)dτ


 = Unf, (37)

after the integral representation (30) has been applied. The matrix-functions C(t),
D(t), and h(t, τ) are determined from (26).

The equation (37) represents the system of equations obtained by approximating
the integrals in the system of SIE (25) with the mechanical quadrature rule.

From the conditions of Theorem 5, and the property of the mechanical quadrature
rule applied to SIE (25), it is easy to verify that (as it has been shown in the proof
process of Theorem 4) the conditions of Theorem 8.4 in [23] are satisfied. Therefore,
from Theorem 8.4 in [23], we can conclude that the system (37) has a unique solution
ζn(t) ∈ [Rn]m if n is large enough. Furthermore, we have the following error estimate,

||ζ − ζn||[Lp]m ≤ O

(
log(2n + 1)

nα

)
+ O

(
1
nα

)
+ O(ω(f ;

1
n

))

+ O

(
ωτ (h;

1
n

)
)

+ O

(
ωt(h;

1
n

)
)

.

(38)

For such an n, the equation (36) has a unique solution xn(t) ∈ [
◦
Xn]m, which is con-

nected with ζn(t) by the formulae (32). Here we have used the fact that xn(t) = yn(t).
Since the exact solutions x(t) of SIDE (1)-(2) and ζ(t) are connected by the formulae
(27), using the inequality (38), we conclude the equality (35). Thus we have completed
the proof for Theorem 5.

Note that similar results for the SIDE (1)-(2) have been provided in Hölder spaces,
for example, see ([24]). But our results are for Lebesgue spaces.
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5 A numerical example

We present the result of an example for m = 1 to show the performance of our method.
In this example, we take the exact solution as

x(t) =
1

t− 1
.

The coefficient matrix functions are chosen as follows

Ã0(t) = Ã1(t) =
1
2

(
t +

1
2
− 1

t

) (
1
t

+ 1
)

,

B̃0(t) = B̃1(t) =
1
2

(
t +

1
2
− 1

t

) (
1
t
− 1

)
,

Kr(t, τ) =
t + r + 1

τ
, r = 0, 1.

The contour Γ is an ellipse R cos(φ) + ir sin(φ). For this example, R = 3 and r = 2.
The right hand side f(t) then is determined from (1).

In Table 1 and Figure 5, we show the result using the numerical method developed
in this paper. The collocation points are taken according to the formula (28).

2 n Error
8 0.0749
16 0.0215
24 0.0012
28 2.8018e-004
32 6.4508e-005

Table 1: Error between the exact solution x(z) and the approximate solution xn(z) at
selected points z for different n. The error is the largest error in the magnitude of all
selected points.

In our test, the non-collocation points have been obtained from formula

z(j) = R cos
(

2π(j − 1)
k

+
π

16

)
+ r i sin

(
2π(j − 1)

k
+

π

16

)
, j = 1, k + 1,

where k is a natural number. We have observed that, we should take enough collocation
points to guarantee the convergence.

6 Conclusions

In this paper, we have proposed a numerical scheme for solving some system of singular
integro-differential equations for arbitrary smooth contours in complex plane. The
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Figure 1: Plot of the solution and the error of the example with m = 1 and n = 16.
The solution are evaluated at k = 100 non-collocation points. (a) The solution plot at
collocation points. The approximate and the exact solutions are almost identical from
the plot. (b) The error plot between the approximate and the exact solution.

method is based on a collocation method and mechanical quadrature rule. The method
has been proved to be convergent in Lebesgue spaces. A numerical example illustrated
the performance of the new method.
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